Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Nat Commun ; 13(1): 4416, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1967601

ABSTRACT

SARS-CoV-2 variants of concern (VOC) have triggered infection waves. Oral antivirals such as molnupiravir promise to improve disease management, but efficacy against VOC delta was questioned and potency against omicron is unknown. This study evaluates molnupiravir against VOC in human airway epithelium organoids, ferrets, and a lethal Roborovski dwarf hamster model of severe COVID-19-like lung injury. VOC were equally inhibited by molnupiravir in cells and organoids. Treatment reduced shedding in ferrets and prevented transmission. Pathogenicity in dwarf hamsters was VOC-dependent and highest for delta, gamma, and omicron. All molnupiravir-treated dwarf hamsters survived, showing reduction in lung virus load from one (delta) to four (gamma) orders of magnitude. Treatment effect size varied in individual dwarf hamsters infected with omicron and was significant in males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir in human trials and alerts that benefit must be reassessed in vivo as VOC evolve.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Cricetinae , Cytidine/analogs & derivatives , Ferrets , Humans , Hydroxylamines , Lung , Male
3.
J Clin Virol ; 141: 104900, 2021 08.
Article in English | MEDLINE | ID: covidwho-1272521

ABSTRACT

More than one year into a global pandemic, SARS-CoV-2 is now defined by a variety of rapidly evolving variant lineages. Several FDA authorized molecular diagnostic tests have been impacted by viral variation, while no reports of viral variation affecting antigen test performance have occurred to date. While determining the analytical sensitivity of the Quidel Sofia SARS Antigen FIA test (Sofia 2), we uncovered a high viral load specimen that repeatedly tested negative by this antigen test. Whole genome sequencing of the specimen uncovered two mutations, T205I and D399N, present in the nucleocapsid protein of the isolate. All six SARS-CoV-2 positive clinical specimens available in our laboratory with a D399N nucleocapsid mutation and CT < 31 were not detected by the Sofia 2 but detected by the Abbott BinaxNOW COVID-19 Ag Card, while clinical specimens with the T205I mutation were detected by both assays. Testing of recombinant SARS-CoV-2 nucleocapsid with these variants demonstrated an approximate 1000-fold loss in sensitivity for the Quidel Sofia SARS Antigen FIA test associated with the D399N mutation, while the BinaxNOW and Quidel Quickvue SARS Antigen tests were unaffected by the mutation. The D399N nucleocapsid mutation has been relatively uncommon to date, appearing in only 0.02% of genomes worldwide at time of writing. Our results demonstrate how routine pathogen genomics can be integrated into the clinical microbiology laboratory to investigate diagnostic edge cases, as well as the importance of profiling antigenic diversity outside of the spike protein for SARS-CoV-2 diagnostics.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Nucleocapsid/genetics , Sensitivity and Specificity
4.
mBio ; 12(2)2021 04 13.
Article in English | MEDLINE | ID: covidwho-1183285

ABSTRACT

RNA viruses that replicate in the cytoplasm often disrupt nucleocytoplasmic transport to preferentially translate their own transcripts and prevent host antiviral responses. The Sarbecovirus accessory protein ORF6 has previously been shown to be a major inhibitor of interferon production in both severe acute respiratory syndrome coronavirus (SARS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we show SARS-CoV-2-infected cells display an elevated level of nuclear mRNA accumulation compared to mock-infected cells. We demonstrate that ORF6 is responsible for this nuclear imprisonment of host mRNA, and using a cotransfected reporter assay, we show this nuclear retention of mRNA blocks expression of newly transcribed mRNAs. ORF6's nuclear entrapment of host mRNA is associated with its ability to copurify with the mRNA export factors, Rae1 and Nup98. These protein-protein interactions map to the C terminus of ORF6 and can be abolished by a single amino acid mutation in Met58. Overexpression of Rae1 restores reporter expression in the presence of SARS-CoV-2 ORF6. SARS-CoV ORF6 also interacts with Rae1 and Nup98. However, SARS-CoV-2 ORF6 more strongly copurifies with Rae1 and Nup98 and results in significantly reduced expression of reporter proteins compared to SARS-CoV ORF6, a potential mechanism for the delayed symptom onset and presymptomatic transmission uniquely associated with the SARS-CoV-2 pandemic. We also show that both SARS-CoV and SARS-CoV-2 ORF6 block nuclear import of a broad range of host proteins. Together, these data support a model in which ORF6 clogs the nuclear pore through its interactions with Rae1 and Nup98 to prevent both nuclear import and export, rendering host cells incapable of responding to SARS-CoV-2 infection.IMPORTANCE SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), is an RNA virus with a large genome that encodes multiple accessory proteins. While these accessory proteins are not required for growth in vitro, they can contribute to the pathogenicity of the virus. We demonstrate that SARS-CoV-2-infected cells accumulate poly(A) mRNA in the nucleus, which is attributed to the accessory protein ORF6. Nuclear entrapment of mRNA and reduced expression of newly transcribed reporter proteins are associated with ORF6's interactions with the mRNA export proteins Rae1 and Nup98. SARS-CoV ORF6 also shows the same interactions with Rae1 and Nup98. However, SARS-CoV-2 ORF6 more strongly represses reporter expression and copurifies with Rae1 and Nup98 compared to SARS-CoV ORF6. Both SARS-CoV ORF6 and SARS-CoV-2 ORF6 block nuclear import of a wide range of host factors through interactions with Rae1 and Nup98. Together, our results suggest ORF6's disruption of nucleocytoplasmic transport prevents infected cells from responding to the invading virus.


Subject(s)
Cell Nucleus/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Binding Sites , COVID-19/metabolism , COVID-19/virology , Cell Line , Gene Expression Regulation , Humans , Mutation , Nuclear Matrix-Associated Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Nucleocytoplasmic Transport Proteins/genetics , Protein Binding , RNA, Messenger/metabolism , SARS-CoV-2/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
5.
Clin Chem ; 66(7): 966-972, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-197877

ABSTRACT

BACKGROUND: More than 2 months separated the initial description of SARS-CoV-2 and discovery of its widespread dissemination in the United States. Despite this lengthy interval, implementation of specific quantitative reverse transcription (qRT)-PCR-based SARS-CoV-2 tests in the US has been slow, and testing is still not widely available. Metagenomic sequencing offers the promise of unbiased detection of emerging pathogens, without requiring prior knowledge of the identity of the responsible agent or its genomic sequence. METHODS: To evaluate metagenomic approaches in the context of the current SARS-CoV-2 epidemic, laboratory-confirmed positive and negative samples from Seattle, WA were evaluated by metagenomic sequencing, with comparison to a 2019 reference genomic database created before the emergence of SARS-CoV-2. RESULTS: Within 36 h our results showed clear identification of a novel human Betacoronavirus, closely related to known Betacoronaviruses of bats, in laboratory-proven cases of SARS-CoV-2. A subset of samples also showed superinfection or colonization with human parainfluenza virus 3 or Moraxella species, highlighting the need to test directly for SARS-CoV-2 as opposed to ruling out an infection using a viral respiratory panel. Samples negative for SARS-CoV-2 by RT-PCR were also negative by metagenomic analysis, and positive for Rhinovirus A and C. Unlike targeted SARS-CoV-2 qRT-PCR testing, metagenomic analysis of these SARS-CoV-2 negative samples identified candidate etiological agents for the patients' respiratory symptoms. CONCLUSION: Taken together, these results demonstrate the value of metagenomic analysis in the monitoring and response to this and future viral pandemics.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Metagenomics , Pneumonia, Viral/diagnosis , Superinfection/diagnosis , Betacoronavirus/classification , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/virology , Enterovirus/classification , Enterovirus/genetics , Enterovirus/isolation & purification , Humans , Nasopharynx/virology , Pandemics , Phylogeny , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , RNA, Viral/chemistry , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sequence Analysis, RNA , Superinfection/virology
SELECTION OF CITATIONS
SEARCH DETAIL